Is Gravity Creating Matter?

Gravity Lensing Changes Light Path 


Einstein predicted that light from distant stars when seen at the edge of the sun would appear to bend slightly.

If we can, just for a moment, abandon the dogma of conservation of mass and energy, we may approach the problem of mass deficit more easily.

What happens inside a star? Is there a way to reverse Einstein’s energy from mass - to use energy - massive amounts - to create matter?

Black Holes - Star Fonts


Any spinning object has energy as per:
E = 1/2 mv^2

Einstein refined to state energy:
E = mc^2

Whenever a body spins, work is done. If we were to hitch up a kite, rig up a sail or build a windmill we’d see how unlimited an amount of energy a large body such as our earth and its spin can produce.

Energy in the hot dense core of a star, or a supermassive black hole, as the body spins, might it be focused as with gravitational lensing, and condensed into matter?

Imagine wave energy being forced by a huge gravity well to bend, as Einstein famously predicted, but not just at the Sun's edge. Imagine in the core of the Milky Way a black hole the weight of fifty billion suns, like the one in the centre of many galaxies.

Blue Nuggets 

Recently it has been reported that at the edge of our view of the universe 'Blue Nugget' galaxies appear with supermassive black holes like our own.  Blue Nuggets have few stars around them, however. That's perhaps what young galaxies look like, since these, being so far away, may only be viewed as they were billions of years ago. This helps to seal our view of stars as emerging over time from the galacticore fusion process. Spinning out.

Blue Nugget galaxies have few stars

Galaxies like these Blue Nuggets may have been the standard primitive form at the beginning of the expansion of the universe since they are only seen at the very limits of our telescopes' powers. Light speed retards our ability to see current views of objects so far away in spacetime.

Light Lag Limits Viewing

A question arises when factoring in light speed and viewing angles.  Unless viewed flat-on, that is, perfectly perpendicular to the galactic disk in question, light speed will cause a lag that will give a false view.  

Stars behind the core send light later than those in front of the core, in cases where galaxies are viewed edge-on.  Starlight passing near the  core will be lensed more than light from edges. Any tilt in the disk viewing plane will of necessity create a false image.  We need computer algorithms to compensate for the variation in distance and provide more accurate models in real time.

One challenge given this stretch is to reevaluate current galaxy typology. Are 'elliptical galaxies' just spirals with gravitational lensing and light-speed lag effects blurring actual form?  Can the actual form ever be seen other than at perfect perpendicularity?



New Mass - From Energy 

Imagine the energy of a star lensing in the very densest core. We can start by rearranging Einstein’s formula and creating matter from energy:

E = mc^2
m0= E/c^2
m= E/(3x10^8)^2 (m/s)^2
m0 = E/(9x10)^16 (m/s)^2

To make 1 kg of new matter, we'll need almost 10^17 J of energy.  More precisely 90 petajoules.  A petajoule is 10^15 J.

The solar radiation (in Joules) received from the Sun by one square meter of the Earth's surface per second is:

1.37 × 10^3 J

Almost 60 trillion square meters at earth's surface are required to create 1 kg of new matter in 1 s.  The total surface area of earth is 510 trillion square meters.  But at the sun's face the power output is much, much higher.

The sun produces 3.9 x 10^26 J/s (W) at its surface.  In the core this could be much higher.  If we apply an inverse-square transformation and assume 99% of the radius to be traversed to reach the area where a planet of Mercury's size fits in the sun, the energy in the core might be (1/99)^-2 or 10000x as great as that at the surface, about 3.9 x 10^30 W.

3.9 x 10^30 W/9 x 10^16 (m/s)^2
= 4.3 x 10^13 kg of new matter/s

 So how much energy is needed to make a planet? It depends on the mass.  Mercury is 3.3 x 10^23 kg.  If 1/10000 of the core's total energy output were being focused and condensed into new matter in a lensing process we can do some nominal estimates of the time required:

4.3 x 10^13 kg/s/10000
= 4.3 x 10^9 kg/s

3.3 x 10^23 kg/4.3x10^9 kg/s
= 7.7 x 10^13 s

Sounds like a lot. A year is about 3.2 x 10^7 s.

7.7 x 10^13 s/3.2 x 10^7 s/y
= 2.4 x 10^6 years 

2.4 million years are needed using these numbers to create Mercury.  This seems reasonable.  What about a gas giant?  The mass of Jupiter is 1.9 x 10^27 kg, around 5800 times that of Mercury.  So it would take 5800x as long to make Jupiter. This  is longer than the current age attributed to our solar system.  However, if we consider the mass at the time of ejection from the sun as being much lighter than the current mass, say 10% as much, the time required is reduced to around 2.4 billion years, which does agree with current models in regards to age.  We can also attribute more than 1/10000 of the energy being used in the fusion of matter from energy to speed things up.

What exactly takes place inside a gravity well?  How exactly might matter be created from energy? 

A wave of light can be bent by gravity in the core of a black hole, forming links and chains, stable localized snippets arranged into packets. Equal pressure from all sides in the centre of the gravity well causes wave circularization - the most stable configuration. Prefusion quantum soup.  

It becomes quickly apparent that the problem of 'mass deficit' is merely a result of not seeing the masses of galaxies and stars as they appear in the present time.  We are limited to views of these as they were in the past, before mass increase.

Stacking of wave maxima is one direction we need to explore in the creation of set masses aka quarks. 

Are there fundamental frequencies at the root of matter organizing into our particular periodic table of elements?  Do these arise from progenitor G wells? Is there an Alpha Maker for various types of elemental matter somewhere in the recesses of 0 time?

One must consider the regularity of the elements. The discovery of these by electrolysis and weights centuries ago is extraordinary. One wonders if local field drivers like the earth, moon and sun have a part in these arrangements. 

With more attention to mass increase (E->m) research we may find that new elements may exist away from our particular niche in these massive G field locators. More massive stars for example may offer a variant field template for matter to organize. In this case we count the particular local inflections we find in our neighbourhood regular. K. B. Ni. Au. Always within reason the same with variations in small percentages - isotopes. What alters the percent of these variants? Movement of earth with respect to Luna and Sol has variant G fields at various moments. These changes if at the root of mass creation may be responsible for some of the isotopy we find. Might comets or asteroids or any body farther or closer to Sol have variants in isotope mixes? Might this reflect the G fields underpinning the local space? 

Might the Centauri system with multiple suns have more exotic matter yet? Again we look to evidence from beyond our atmosphere. Samples from our moon may have variations in isotopy due to G field variations wrt those found on earth.

Let's agree dark matter is there (baryonic) but not seen yet due to light speed lag.


That much is indicated by sheer force of basic logic. 

The funds spent on multi billion dollar particle colliders might be more efficiently used to make a device using lasers in a sphere focused to a point at its centre in a vacuum to make a quark.

A Sphere studded with lasers with variable settings voided of all particles by vacuum that focuses all light to a point in the centre ought to result in the creation of quarks. Study of the Variation in light properties and type and arrangement of quarks produced in this device will become a field of its own.

This is as per m=E/c^2  

 

Expanding Earth